Goto

Collaborating Authors

 Tunisia


On the Origins of Sampling Bias: Implications on Fairness Measurement and Mitigation

arXiv.org Artificial Intelligence

Accurately measuring discrimination is crucial to faithfully assessing fairness of trained machine learning (ML) models. Any bias in measuring discrimination leads to either amplification or underestimation of the existing disparity. Several sources of bias exist and it is assumed that bias resulting from machine learning is born equally by different groups (e.g. females vs males, whites vs blacks, etc.). If, however, bias is born differently by different groups, it may exacerbate discrimination against specific sub-populations. Sampling bias, in particular, is inconsistently used in the literature to describe bias due to the sampling procedure. In this paper, we attempt to disambiguate this term by introducing clearly defined variants of sampling bias, namely, sample size bias (SSB) and underrepresentation bias (URB). Through an extensive set of experiments on benchmark datasets and using mainstream learning algorithms, we expose relevant observations in several model training scenarios. The observations are finally framed as actionable recommendations for practitioners.


MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens Anas Awadalla 1,2 Le Xue 2 Oscar Lo1

Neural Information Processing Systems

Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises of one trillion text tokens and 3.4 billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS.


Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models

Neural Information Processing Systems

We focus on the task of learning a single index model \sigma(w \star \cdot x) with respect to the isotropic Gaussian distribution in d dimensions. Prior work has shown that the sample complexity of learning w \star is governed by the information exponent k \star of the link function \sigma, which is defined as the index of the first nonzero Hermite coefficient of \sigma . Ben Arous et al. (2021) showed that n \gtrsim d {k \star-1} samples suffice for learning w \star and that this is tight for online SGD. However, the CSQ lower bound for gradient based methods only shows that n \gtrsim d {k \star/2} samples are necessary. In this work, we close the gap between the upper and lower bounds by showing that online SGD on a smoothed loss learns w \star with n \gtrsim d {k \star/2} samples.


Advancements in Natural Language Processing for Automatic Text Summarization

arXiv.org Artificial Intelligence

The substantial growth of textual content in diverse domains and platforms has led to a considerable need for Automatic Text Summarization (ATS) techniques that aid in the process of text analysis. The effectiveness of text summarization models has been significantly enhanced in a variety of technical domains because of advancements in Natural Language Processing (NLP) and Deep Learning (DL). Despite this, the process of summarizing textual information continues to be significantly constrained by the intricate writing styles of a variety of texts, which involve a range of technical complexities. Text summarization techniques can be broadly categorized into two main types: abstractive summarization and extractive summarization. Extractive summarization involves directly extracting sentences, phrases, or segments of text from the content without making any changes. On the other hand, abstractive summarization is achieved by reconstructing the sentences, phrases, or segments from the original text using linguistic analysis. Through this study, a linguistically diverse categorizations of text summarization approaches have been addressed in a constructive manner. In this paper, the authors explored existing hybrid techniques that have employed both extractive and abstractive methodologies. In addition, the pros and cons of various approaches discussed in the literature are also investigated. Furthermore, the authors conducted a comparative analysis on different techniques and matrices to evaluate the generated summaries using language generation models. This survey endeavors to provide a comprehensive overview of ATS by presenting the progression of language processing regarding this task through a breakdown of diverse systems and architectures accompanied by technical and mathematical explanations of their operations.


Meta AI adds Arabic support for Middle East and North Africa

ZDNet

As large language models face growing criticism for their lack of language inclusivity beyond the English-dominated West, leading AI companies have started tailoring regional-specific LLMs to break this cycle. Now, Meta is riding that wave. Meta is expanding Meta AI across the Middle East and North Africa (aka, MENA) as it provides language support for millions of Arabic-speaking users in Algeria, Egypt, Iraq, Jordan, Libya, Morocco, Saudi Arabia, Tunisia, the United Arab Emirates (UAE), and Yemen. Similarly, Mistral AI recently released its first Arabic-centric language model, Saba, which is tailored to meet the needs of its growing customer base in Arabic-speaking countries. Meta AI, an AI-powered chatbot and virtual assistant based on Llama 3.2, is available on Facebook, Instagram, WhatsApp, and Messenger.


Visual Reasoning Evaluation of Grok, Deepseek Janus, Gemini, Qwen, Mistral, and ChatGPT

arXiv.org Artificial Intelligence

Traditional evaluations of multimodal large language models (LLMs) have been limited by their focus on single-image reasoning, failing to assess crucial aspects like contextual understanding, reasoning stability, and uncertainty calibration. This study addresses these limitations by introducing a novel benchmark that integrates multi-image reasoning tasks with rejection-based evaluation and positional bias detection. To evaluate these dimensions, we further introduce entropy as a novel metric for quantifying reasoning consistency across reordered answer variants. We applied this benchmark to assess Grok 3, ChatGPT-4o, ChatGPT-o1, Gemini 2.0 Flash Experimental, DeepSeek Janus models, Qwen2.5-VL-72B-Instruct, QVQ-72B-Preview, and Pixtral 12B across eight visual reasoning tasks, including difference spotting and diagram interpretation. Our findings reveal ChatGPT-o1 leading in overall accuracy (82.5\%) and rejection accuracy (70.0\%), closely followed by Gemini 2.0 Flash Experimental (70.8\%). QVQ-72B-Preview demonstrated superior rejection accuracy (85.5\%). Notably, Pixtral 12B (51.7\%) showed promise in specific domains, while Janus models exhibited challenges in bias and uncertainty calibration, reflected in low rejection accuracies and high entropy scores. High entropy scores in Janus models (Janus 7B: 0.8392, Janus 1B: 0.787) underscore their susceptibility to positional bias and unstable reasoning, contrasting with the low entropy and robust reasoning of ChatGPT models. The study further demonstrates that model size is not the sole determinant of performance, as evidenced by Grok 3 underperformance despite its substantial parameter count. By employing multi-image contexts, rejection mechanisms, and entropy-based consistency metrics, this benchmark sets a new standard for evaluating multimodal LLMs, enabling a more robust and reliable assessment of next-generation AI systems.


Convolutional Fourier Analysis Network (CFAN): A Unified Time-Frequency Approach for ECG Classification

arXiv.org Artificial Intelligence

Machine learning has transformed the classification of biomedical signals such as electrocardiograms (ECGs). Advances in deep learning, particularly convolutional neural networks (CNNs), enable automatic feature extraction, raising the question: Can combining time- and frequency-domain attributes enhance classification accuracy? To explore this, we evaluated three ECG classification tasks: (1) arrhythmia classification, (2) identity recognition, and (3) apnea detection. We initially tested three methods: (i) 2-D spectrogram-based frequency-time classification (SPECT), (ii) time-domain classification using a 1-D CNN (CNN1D), and (iii) frequency-domain classification using a Fourier transform-based CNN (FFT1D). Performance was validated using K-fold cross-validation. Among these, CNN1D (time only) performed best, followed by SPECT (time-frequency) and FFT1D (frequency only). Surprisingly, SPECT, which integrates time- and frequency-domain features, performed worse than CNN1D, suggesting a need for a more effective time and frequency fusion approach. To address this, we tested the recently proposed Fourier Analysis Network (FAN), which combines time- and frequency-domain features. However, FAN performed comparably to CNN1D, excelling in some tasks while underperforming in others. To enhance this approach, we developed the Convolutional Fourier Analysis Network (CFAN), which integrates FAN with CNN. CFAN outperformed all previous methods across all classification tasks. These findings underscore the advantages of combining time- and frequency-domain features, demonstrating CFAN's potential as a powerful and versatile solution for ECG classification and broader biomedical signal analysis


Optimal Spectral Transitions in High-Dimensional Multi-Index Models

arXiv.org Artificial Intelligence

We consider the problem of how many samples from a Gaussian multi-index model are required to weakly reconstruct the relevant index subspace. Despite its increasing popularity as a testbed for investigating the computational complexity of neural networks, results beyond the single-index setting remain elusive. In this work, we introduce spectral algorithms based on the linearization of a message passing scheme tailored to this problem. Our main contribution is to show that the proposed methods achieve the optimal reconstruction threshold. Leveraging a high-dimensional characterization of the algorithms, we show that above the critical threshold the leading eigenvector correlates with the relevant index subspace, a phenomenon reminiscent of the Baik-Ben Arous-Peche (BBP) transition in spiked models arising in random matrix theory. Supported by numerical experiments and a rigorous theoretical framework, our work bridges critical gaps in the computational limits of weak learnability in multi-index model.


SigWavNet: Learning Multiresolution Signal Wavelet Network for Speech Emotion Recognition

arXiv.org Artificial Intelligence

In the field of human-computer interaction and psychological assessment, speech emotion recognition (SER) plays an important role in deciphering emotional states from speech signals. Despite advancements, challenges persist due to system complexity, feature distinctiveness issues, and noise interference. This paper introduces a new end-to-end (E2E) deep learning multi-resolution framework for SER, addressing these limitations by extracting meaningful representations directly from raw waveform speech signals. By leveraging the properties of the fast discrete wavelet transform (FDWT), including the cascade algorithm, conjugate quadrature filter, and coefficient denoising, our approach introduces a learnable model for both wavelet bases and denoising through deep learning techniques. The framework incorporates an activation function for learnable asymmetric hard thresholding of wavelet coefficients. Our approach exploits the capabilities of wavelets for effective localization in both time and frequency domains. We then combine one-dimensional dilated convolutional neural networks (1D dilated CNN) with a spatial attention layer and bidirectional gated recurrent units (Bi-GRU) with a temporal attention layer to efficiently capture the nuanced spatial and temporal characteristics of emotional features. By handling variable-length speech without segmentation and eliminating the need for pre or post-processing, the proposed model outperformed state-of-the-art methods on IEMOCAP and EMO-DB datasets. The source code of this paper is shared on the Github repository: https://github.com/alaaNfissi/SigWavNet-Learning-Multiresolution-Signal-Wavelet-Network-for-Speech-Emotion-Recognition.


CAPRAG: A Large Language Model Solution for Customer Service and Automatic Reporting using Vector and Graph Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

The introduction of new features and services in the banking sector often overwhelms customers, creating an opportunity for banks to enhance user experience through financial chatbots powered by large language models (LLMs). We initiated an AI agent designed to provide customers with relevant information about banking services and insights from annual reports. We proposed a hybrid Customer Analysis Pipeline Retrieval-Augmented Generation (CAPRAG) that effectively addresses both relationship-based and contextual queries, thereby improving customer engagement in the digital banking landscape. To implement this, we developed a processing pipeline to refine text data, which we utilized in two main frameworks: Vector RAG and Graph RAG. This dual approach enables us to populate both vector and graph databases with processed data for efficient retrieval. The Cypher query component is employed to effectively query the graph database. When a user submits a query, it is first expanded by a query expansion module before being routed to construct a final query from the hybrid Knowledge Base (KB). This final query is then sent to an open-source LLM for response generation. Overall, our innovative, designed to international banks, serves bank's customers in an increasingly complex digital environment, enhancing clarity and accessibility of information.